You are given a rooted tree consisting of \(n \) nodes. The nodes are numbered 1, 2, \ldots, \(n \), and node 1 is the root. Each node has a color.

Your task is to determine for each node the number of distinct colors in the subtree of the node.

Input
The first input line contains an integer \(n \): the number of nodes. The nodes are numbered 1, 2, \ldots, \(n \).

The next line consists of \(n \) integers \(c_1, c_2, \ldots, c_n \): the color of each node.

Then there are \(n - 1 \) lines describing the edges. Each line contains two integers \(a \) and \(b \): there is an edge between nodes \(a \) and \(b \).

Output
Print \(n \) integers: for each node 1, 2, \ldots, \(n \), the number of distinct colors.

Constraints
- \(1 \leq n \leq 2 \cdot 10^5 \)
- \(1 \leq a, b \leq n \)
- \(1 \leq c_i \leq 10^9 \)

<table>
<thead>
<tr>
<th>Sample Input 1</th>
<th>Sample Output 1</th>
</tr>
</thead>
</table>
| 5
| 2 3 2 2 1
| 1 2
| 1 3
| 3 4
| 3 5 | 3 1 2 1 1 |